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Abstract. We derive the quantitative modulus of continuity

ω(r) =
[
p+ ln

( r0
r

)]−α(n,p)
,

which we conjecture to be optimal, for solutions of the p-degenerate two-

phase Stefan problem. Even in the classical case p = 2, this represents a

twofold improvement with respect to the early 1980’s state-of-the-art results
by Caffarelli–Evans [5] and DiBenedetto [8], in the sense that we discard one

logarithm iteration and obtain an explicit value for the exponent α(n, p).

1. Introduction

This paper concerns the local behaviour of bounded weak solutions of the de-
generate two-phase Stefan problem

∂t
[
u+ LhHa(u)

]
3 div

[
|Du|p−2Du

]
, p ≥ 2 , (1.1)

where Ha is the Heaviside graph centred at a ∈ R, defined by

Ha(s) =


0 if s < a ,

[0, 1] if s = a ,

1 if s > a ,

(1.2)

and Lh > 0. Our main result is the derivation of the explicit, interior modulus of
continuity

ω(r) :=
[
p+ ln

(r0

r

)]−α(n,p)

, 0 < r ≤ r0 , (1.3)

which we conjecture to be optimal.
An extensive literature, both from the theoretical and the computational points

of view, is available for the classical Stefan problem

∂t
[
u+ LhH0(u)

]
3 4u, (1.4)

corresponding to the case p = 2, which is a simplified model to describe the evolu-
tion of the configuration of a substance which is changing phase, when convective
effects are neglected. The function u represents the temperature and the value
u = 0 is the level at which the change of phase occurs; the height Lh of the jump
of the graph LhH0(·) corresponds to the latent heat of fusion and a selection of
the graph is called the enthalpy of the problem. For simplicity, we consider Lh ≤ 1
from now on. The case of study of positive solutions (note we are taking a = 0 in
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(1.4)) is usually called one-phase Stefan problem, while if no sign assumptions are
made on u we are dealing with the two-phase Stefan problem; see [15, 23] for the
deduction of (1.4) from the classic formulation, which goes back to Stefan at the
end of the nineteenth century [30] and has been subsequently developed in [19, 25].
We mention that the model (1.4) also finds applications in finance [26], biology re-
lated to the Lotka-Volterra model [7], and flows of solutes or gases in porous media
[27].

Clearly (1.4) and (1.1) need to be understood using an appropriate notion of
(weak) solution, and the one we employ is that of differential inclusion in the sense
of graphs, see Definition 1.9; other approaches can be used and the most noticeable
one is that of viscosity solutions in the sense introduced by Crandall and Lions, and
developed by Caffarelli; see [2] and the recent survey by Salsa [29]. Notice that weak
solutions are viscosity solutions once one knows they are continuous (and in fact
they are, see the following lines); under an additional conditions (namely, {u = 0}
is negligible) the converse also holds true, see [20].

For the one-phase Stefan problem (1.4), continuity of weak solutions has been
proved by Caffarelli and Friedman in [6], with an explicit modulus of continuity:

C
[
ln
(r0

r

)]−ε
, if n ≥ 3 ; C 2−[ln( r0r )]

γ

, if n = 2 ,

for a positive constant C, for any 0 < ε < 2
n−2 and 0 < γ < 1

2 . For the two-phase

problem, continuity was proved, almost at the same time, by Caffarelli and Evans [5]
for (1.4), and by DiBenedetto [8], who considered more general, nonlinear structures
for the elliptic part, albeit with linear growth with respect to the gradient, and lower
order terms depending on the temperature, which is relevant when convection is
taken into account:

∂t
[
u+H0(u)

]
3 div a(x, t, u,Du) + b(x, t, u,Du), a(x, t, u,Du) ≈ Du; (1.5)

see also, respectively, [28] and [34]. More general structures, including multi-phase
Stefan problem, were considered in [14]. Both in Caffarelli-Evans and DiBenedetto
papers [5, 8], even if not explicitly stated, the proof yields a modulus of continuity
of the type

ω(r) =

[
ln ln

(
Ar0

r

)]−σ
, for some A, σ > 0 , (1.6)

see the forthcoming subsection 1.2. We also mention DiBenedetto and Friedman
who, in the first of their papers about the gradient regularity for solutions of para-
bolic p-Laplace equations, state that the method of the paper yields (1.6) as mod-
ulus of continuity for the solutions to (1.5), see [11, Remark 3.1].

Details are somehow pointed out in [9], where DiBenedetto shows that, in the
case of Hölder continuous boundary data, the solution of the Cauchy-Dirichlet
problem for equation (1.5) has modulus of continuity (1.6), giving a quantitative
form to the up-to-the-boundary continuity result previously proved by Ziemer in
[34]. These, to the best of our knowledge, are the last quantitative results concerning
the continuity of the solutions of the classical two-phase Stefan problem.

For the degenerate case, p > 2 in (1.1), very little is known. Existence was ob-
tained by one of the authors in [31] using an approximation method; subsequently
he proved the continuity [32] of at least one of them, in the spirit of [8], circumvent-
ing the additional difficulties resulting from the presence of the p-Laplacian in the
elliptic part. The continuity proof only leads to an implicit modulus of continuity.
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Our derivation of the modulus of continuity (1.3) represents an improvement
with respect to the state-of-the-art in several ways: we discard an iteration of
the logarithm, reaching what we conjecture to be the sharp, optimal modulus of
continuity for the two-phase Stefan problem; we determine the precise value of the
exponent α in terms of the data of the problem; we cover the degenerate case p > 2
and we provide a comprehensive proof, which we tried to keep as self-contained as
possible.

1.1. Statement of the problem and main result. More generally, we shall
consider the following extension of (1.1):

∂t
[
β(u) + LhHa(β(u))

]
3 divA(x, t, u,Du) in ΩT := Ω× (0, T ) , (1.7)

where Ω is a bounded domain of Rn, n ≥ 2. Ha is defined in (1.2), β : R→ R is a
C1-diffeomorphism such that β(0) = 0 and satisfying the bi-Lipschitz condition

Λ−1|u− v| ≤ |β(u)− β(v)| ≤ Λ|u− v|

for some given Λ ≥ 1 and the vector field A is measurable with respect to the first
two variables and continuous with respect to the last two, satisfying, in addition,
the following growth and ellipticity assumptions:

|A(x, t, u, ξ)| ≤ Λ|ξ|p−1 , 〈A(x, t, u, ξ), ξ〉 ≥ Λ−1|ξ|p ; (1.8)

the previous inequalities are intended to hold for almost any (x, t) ∈ ΩT and for
all (u, ξ) ∈ R × Rn. We consider the bi-Lipschitz function β in order to include
thermal properties of the medium, which may slightly change with respect to the
temperature, as already done in [8, 24].

Definition 1.9. A local weak solution to equation (1.7) is a function

u ∈ L∞loc(0, T ;L2
loc(Ω)) ∩ Lploc(0, T ;W 1,p

loc (Ω)) =: V 2,p
loc (ΩT )

such that a selection v ∈ β(u) + LhHa(β(u)) satisfies the integral identity∫
K

[v ϕ](·, τ) dx

∣∣∣∣t2
τ=t1

+

∫
K×[t1,t2]

[
− v ∂tϕ+ 〈A(·, ·, u,Du), Dϕ〉

]
dx dt = 0

for all K b Ω, almost every t1, t2 ∈ R such that [t1, t2] b (0, T ) and for every test

function ϕ ∈ Lploc(0, T ;W 1,p
0 (K)) such that ∂tϕ ∈ L2(K × [t1, t2]).

We assume in this paper that a local weak solution can be obtained as a locally
uniform limit of locally Hölder continuous solutions to (1.7) for a regularized graph,
see Section 2.1. In [4] we construct such a solution for the Cauchy-Dirichlet problem
with continuous boundary datum; we derive, in addition, an explicit modulus of
continuity up to the boundary. We refer to [16, 23] for the existence of weak
solutions for bounded Cauchy-Dirichlet data in the case p = 2. For the case p > 2
the solution, whose existence can be retrieved from [32], is known to be unique just
for homogeneous Dirichlet data, see [18].

Our main result is the derivation of a quantitative modulus of continuity for
local weak solutions to (1.7).
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Theorem 1.1. Let u be a local weak solution to (1.7), obtained by approximation,
and let α ≡ α(n, p) ∈ (0, 1/2] defined by

α :=



p

n+ p
for p < n ,

any number <
1

2
for p = n ,

1

2
for p > n .

(1.10)

Then there exist constants M,L and c∗, larger than one and depending only on
n, p,Λ and α, such that, considering the modulus of continuity

ω(r) = L
[
p+ ln

(r0

r

)]−α
(1.11)

and cylinders

Qω(·)
r (x0, t0) := Br(x0)× (t0−M max{osc

ΩT
u, 1}2−p[ω(r)](2−p)(1+1/α)rp, t0) , (1.12)

we have that if Q
ω(·)
r0 ≡ Qω(·)

r0 (x0, t0) ⊂ ΩT , then

osc
Q
ω(·)
r

u ≤ c∗ ω(r) max{osc
ΩT

u, 1} (1.13)

holds for all r ∈ (0, r0].

Remark 1.14. It is rather straightforward to see that the above defined space-time

cylinders Q
ω(·)
r satisfy

Qω(·)
r1 ⊂ Qω(·)

r2 ⊂ Qω(·)
r0

whenever 0 < r1 ≤ r2 ≤ r0; moreover, r 7→ ω(r) is concave for 0 < r ≤ r0. For
details, see Section 4.

Remark 1.15. Observe that, in the above theorem, α can be taken arbitrarily close
to 1/2 in the case p = n; however, the constants c∗ and M in Theorem 1.1 blow up
as α ↑ 1/2.

1.2. Some notes about the proof. We explain here, briefly and formally, the
main ideas behind the continuity proofs, which can perhaps be blurred by the
technical details. We shall indeed work with approximate solutions uε and show
ultimately that

osc
Q
ω(·)
r

uε ≤ c∗ ω(r) max{osc
ΩT

u, 1}+ c ε ,

where ω(·) and Q
ω(·)
r are defined in (1.11)-(1.12), uε is the solution to the approx-

imating equation (2.1) and c does not depend on ε. From this it will be easy to
deduce Theorem 1.1 simply by taking the limit as ε ↓ 0 and using the convergence
of uε to u. For simplicity, we shall directly describe, in the following lines, the
formal argument for u.

Usually continuity estimates are based on estimating the rate of decrease of
the oscillation of the solution in a family of nested cylinders {Qj} in terms of a
vanishing sequence {ωj}: oscQj u ≤ c ωj . The sequence {ωj} can be taken satisfying
a recursive expression of the type

ωj+1 = η(ωj)ωj , η non-increasing, concave, (1.16)

such that η(0) = 1 and η(1) ∈ (0, 1). If η has the form

η(ω) = 1− e−ϑ1ω
−ϑ2
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where ϑ1, ϑ2 are given positive constants, this yields the modulus of continuity
(1.6) and this can be see from easy modifications of the argument of subsection 4.1.
Concerning the Stefan problem, see [5, Proposition 4.1], [8, Lemma 4.1], [9, End of
Section 3].

In this paper we manage to prove that for the two-phase Stefan problem, in
(1.16) we can take

η(ω) = 1− ϑω1/α

ϑ ∈ (0, 1) and α as in (1.10), see Theorem 4.1. The main contribution for this
improvement is the use of the weak Harnack inequality for supersolutions, whose
use is allowed by the simple Lemma 2.3.

We sketch now the proof of the reduction of the oscillation. After fixing a
cylinder Qj ≡ Q

ωj
rj as above, we can suppose, up to translation and rescaling, that

supu = oscu ≤ 1 on Qj . Moreover, we can clearly suppose that oscu > ωj = ω(rj)
and also that the jump is in the interval [oscu/2, oscu] (note that if the jump is
outside [0, oscu] there is nothing to prove, since we are dealing with the parabolic
p-Laplace equation in Qj), see subsection 3.1. Next we fix a classical alternative:

either supu = oscu is greater than ωj/4 in a large portion of the cylinder Q̃j ⊂ Qj
(Alt. 1), or this does not hold (Alt. 2). Here, Q̃j is a suitable, smaller cylinder,
whose time-scale differs from that used for Qj .

In the case that (Alt. 1) holds true, we truncate the solution below the jump,
obtaining a weak supersolution to the parabolic p-Laplace equation, and we use
the weak Harnack inequality, together with (Alt. 1) to lift up the infimum of u,
therefore reducing the oscillation. Note that here we shall use that the jump belongs
to the interval [oscu/2, oscu] in order to have enough room to make the truncation
possible.

In the second case, we use Caccioppoli’s inequality to perform a De Giorgi it-
eration, starting from the smallness in measure information of (Alt. 2). We have
to use two tools in order to rebalance the high degeneracy of the problem, caused
both by the jump (which produces an L1 term on the right-hand side of the energy
estimate, see (2.8)) and by the presence of the p-Laplacian: the latter is rebalanced

by the size of the cylinder, which depends on ωj , see T̃
ωj
rj in (2.5), while the former

is rebalanced by the fact that we introduce ωj in the size conditions of the alter-
natives, see again (Alt. 1)-(Alt. 2). Notice that, in the case p = 2, the cylinders we
consider are the standard parabolic ones, Brj (x0)× (t0 −Mrj

2, t0), for a large but
universal constant M ; hence, for the logarithmic continuity for the classical Stefan
problem (1.4), the trick essentially consists in rebalancing the presence of the jump
with an alternative involving the modulus of continuity itself. Having reduced the
supremum of u on a part of the cylinder (see (3.14)), using the time scale given

by T̃
ωj
rj , we forward this information in time using a logarithmic estimate and then

perform another De Giorgi iteration, this time using the second time scale T
ωj
rj in

(2.5) to rebalance the eventual degeneracy due to the p-Laplacian operator. Con-
necting the two alternatives and iterating the resulting information we infer (1.16)
with η(ω) = 1−ϑω1/α and now it is easy to deduce the explicit form of the modulus
of continuity (1.3), see Subsection 4.1.

Finally, we would like to highlight the points of contact of our paper with the
recent work [22], where sharp continuity results are proved for obstacle problems
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involving the evolutionary p-Laplacian operator. There, it is shown that, once
considering obstacles with modulus of continuity ω(·) (where here this expression
has to be understood in an appropriate, intrinsic way), the solution has the same
regularity, in the sense that it has the same modulus of continuity. In order to get
such result, the authors have to deal with particular cylinders of the form (take as
the center the origin, for simplicity)

Qλω(·)
r := Br × (−[λω(r)]2−prp, 0), with λ ≈

osc
Q
λω(·)
r

u

ω(r)

and where u is the solution they are considering; these cylinders are the ones in-
volved also in the intrinsic definition of the modulus of continuity and they allow
to rebalance the inhomogeneity of the problem. This is an extension of the classic
approach to regularity for the parabolic p-Laplacian, see [1, 10, 33], where results
are recovered as extremal cases of a family of general interpolative intrinsic geome-
tries. Notice the similitude with the cylinders defined in (1.12) and the fact that we
also have to deal with the further inhomogeneity given by the jump; this precisely
reflects in the presence of the exponent 1 + 1/α in (1.12).

1.3. Notation. Our notation will be mostly self-explanatory; we mention here
some noticeable facts. We shall follow the usual convention of denoting by c a
generic constant, always greater or equal than one, that may vary from line to
line; constants we shall need to recall will be denoted with special symbols, such as
c̃, c∗, c1 or the like. Dependencies of constants will be emphasised between parenthe-
ses: c(n, p,Λ) will mean that c depends only on n, p,Λ; they will often be indicated
just after displays. The dependence of constants upon α (and on κ, see (3.4)) will
be meaningful only in the case p = n; in the case p < n this would just add a
dependence on n, p – see also Remark 1.15. Unless otherwise stated, we shall avoid
to indicate the centre of the ball when it will be the zero vector: Br := Br(0).

Being A ∈ Rk a measurable set with positive measure and f : A → Rm an
integrable map, with k,m ≥ 1, we shall denote with (f)A the averaged integral

(f)A :=

∫
A

f(ξ) dξ :=
1

|A|

∫
A

f(ξ) dξ .

We stress that with the statement “a vector field with the same structure as A” (or
“structurally similar to A”, or similar expressions) we shall mean that the vector
field A satisfies (1.8), possibly with Λ replaced by a constant depending only on
n, p and Λ, and continuous with respect to the last two variables.

Finally, by ln lnx, for x > 1, we will mean ln(lnx); N will be the set {1, 2, . . . },
while N0 := N ∪ {0}; R+ := [0,∞).

2. Collecting tools

2.1. Approximation of the problem. Let ρε be the standard symmetric, posi-
tive one dimensional mollifier supported in (−ε, ε). Set

Ha,ε(s) := (ρε ∗Ha)(s) for s ∈ R ;

then Ha,ε is smooth. Moreover, the support of H ′a,ε is contained in (a − ε, a + ε).
Let {uε} be a sequence converging locally uniformly to u as ε ↓ 0, where uε is a
weak solution to the approximate equation

∂t
[
β(uε) + LhHa,ε(β(uε))

]
− divA(x, t, uε, Duε) = 0 in ΩT . (2.1)
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Now, setting

w := β(uε) , (2.2)

we arrive at the regularized equation

∂tw − div Ã(x, t, w,Dw) = −Lh ∂tHa,ε(w) , (2.3)

where

Ã(x, t, w,Dw) := A(x, t, β−1(w), [β′(β−1(w))]−1Dw) .

Observe that the growth and ellipticity bounds for Ã are inherited from A and from
the two-sided bound for β′: indeed, we in particular get that

|Ã(x, t, u, ξ)| ≤ Λp|ξ|p−1 , 〈Ã(x, t, u, ξ), ξ〉 ≥ Λ−p|ξ|p (2.4)

for almost every (x, t) ∈ ΩT and for all (u, ξ) ∈ R × Rn. Moreover, Ã is clearly
continuous with respect to the last two variables since β is C1-diffeomorphism.
Note that we dropped ε from the notation; it will be recovered in Section 4.

By regularity theory for evolutionary p-Laplace type equations, see [10, 33], we
actually have that the solution w is Hölder continuous since β(uε) +LhHa,ε(β(uε))
is a diffeomorphism. However, this kind of regularity depends on the regularization
and, in particular, will deteriorate as ε ↓ 0. Nonetheless, we may assume that the
solution w to the regularized equation is continuous having pointwise values.

2.2. Scaling of the equation. Once given a function z solving (2.1) or (2.3) in
Br(x0)× (t0 − λ2−pT , t0), for some T > 0, λ ≥ 1, if we consider the function

z̄(y, s) := λ−1z(x0 + y, t0 − λ2−p(T0 + T ) + λ2−ps), (y, s) ∈ Br × (T0, T0 + T ) ,

it is easy to see that z̄ solves an equation which is structurally similar to the one
solved by z, but with a multiplier λ−1Lh ∈ [0, 1] for the phase-transition term.

2.3. Space-time geometry. We set

T̃ωr := ω2−prp and Tωr := Mω(2−p)(1+1/α)rp , (2.5)

for any number ω > 0; accordingly, we define

Q̃ωr = Br/4 ×
(
0, T̃ωr

)
and Qωr := Br ×

(
0, Tωr

)
.

Note that later on we shall choose ω = ω(r), after having chosen appropriately the
value of L, see subsection 4.1; for the moment, it will be enough to think to ω as a
free parameter.

2.4. Energy estimates. We consider in this subsection continuous weak solutions
to the following equation

∂tv − div Ã(x, t, v,Dv) = −L̃h ∂tHb,ε(v) , (2.6)

where Ã has the same structure of A, b ∈ R, and L̃h ∈ [0, 1]; we shall, in particular,
use the next results for equation (3.2), with b defined in (3.1). The following is a
Caccioppoli’s inequality for (2.6); for ease of notation we shall denote, from now
on,

H(s) := s+ L̃hHb,ε(s) , s ∈ R . (2.7)
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Lemma 2.1. There exists a constant c, depending only on n, p and Λ, such that,
if v is a solution to (2.6) in a cylinder Q = B × Γ, then

sup
τ∈Γ

L̃h
|Γ|

∫
B

[∫ v

k

H ′b,ε(ξ)(ξ − k)+ dξ φ
p
]
(·, τ) dx

+ sup
τ∈Γ

1

|Γ|

∫
B

[
(v − k)2

+φ
p
]
(·, τ) dx+

∫
Q

∣∣D[(v − k)+φ]
∣∣p dx dt

≤ c
∫
Q

[
(v − k)p+|Dφ|p + (v − k)2

+ (∂tφ
p)+

]
dx dt

+ c L̃h
∫
Q

∫ v

k

H ′b,ε(ξ)(ξ − k)+ dξ (∂tφ
p)+ dx dt (2.8)

for any k ∈ R and any test function φ ∈ C∞(Q), such that (v− k)+φ
p vanishes on

the parabolic boundary of Q.

Proof. In order to get (2.8), we test, in the weak formulation of (2.6), with (v −
k)+φ

pχΓ∩(−∞,τ) for τ ∈ Γ. The calculations are standard; we only show here
how to formally treat the parabolic term (see also the proof of Lemma 2.3): being

Q̂ := Q ∩ [B × (−∞, τ)],∫
Q̂

∂tvH′(v)(v − k)+φ
p dx dt =

∫
Q̂

∂t

[∫ v

k

H′(ξ)(ξ − k)+ dξ

]
φp dx dt

=

∫
B

∫ v(·,τ)

k

H′(ξ)(ξ − k)+ dξ φ
p dx−

∫
Q̂

∫ v

k

H′(ξ)(ξ − k)+ dξ ∂tφ
p dx dt .

�

The next lemma allows to forward information in time. The result in the case
of evolutionary p-Laplace type equations is a standard “Logarithmic Lemma”, see
for example the proof in [10, Chapter II].

Lemma 2.2. Let T ∈ (0, Tωr ), for Tωr as in (2.5). Suppose that v ∈ C(Qωr )
solves (2.6) in Qωr and

v(x, T ) ≤ osc v − ω

4
, ∀x ∈ Br/8 ;

let moreover ν∗ ∈ (0, 1). Then there exists a constant ς ∈ (0, 1/2), depending only

on n, p,Λ,M and ν∗, such that, if Q̂ := Br/16 × (T , Tωr ), then∣∣∣Q̂ ∩ {v ≥ osc v − ς ω1+1/α
}∣∣∣

|Q̂|
≤ ν∗. (2.9)

Proof. Denote, in short, Ã(Dv) := Ã(x, t, v,Dv) and recall the definition of H in
(2.7). Consider a time independent cut-off function φ ∈ C∞0 (Br), 0 ≤ φ ≤ 1, such
that

φ ≡ 1 in Br/16 and φ = 0 on ∂Br/8 with |Dφ| ≤ 32/r .

Take

0 < S+ :=
ω1+1/α

8
≤ ω

4
and k = osc v − S+,



QUANTITATIVE MODULUS OF CONTINUITY 9

and define the logarithmic function

Ψ(v) =

[
ln

(
S+

S+ − (v − k)+ + ςS+

)]
+

, ς ∈ (0, 1/2) to be fixed.

We only have Ψ(v) 6= 0 when

S+ > S+ − (v − k)+ + ςS+ ⇐⇒ v > osc v − 1− ς
8

ω1+1/α =: v− .

Note, in particular, that v− > osc v − ω/4 and that v− − k = ς S+. We have,
formally,

Ψ ′(v) = χ{v>v−}
1

S+ − (v − k)+ + ςS+

and

Ψ ′′(v) = δv−v−
1

S+ − (v − k)+ + ςS+
+ χ{v>v−}

1

(S+ − (v − k)+ + ςS+)2

= δv−v−
1

S+
+ χ{v>v−}

1

(S+ − (v − k)+ + ςS+)2
=
δv−v−
S+

+
[
Ψ ′(v)

]2
,

where δv−v− is the Dirac delta centered in v − v−. Testing formally the equation

with η = Ψ ′(v)Ψ(v)φpχ(T ,τ)(t), for τ ∈ (T , Tωr ], we have

−
∫
Br/8×(T ,τ)

〈Ã(Dv), Dη〉 dx dt =

∫
Br/8×(T ,τ)

∂tH(v)η dx dt .

The choice of the test function is admissible after a suitable mollification in time,
following the same steps as in the end of the proof of Lemma 2.3, when treating
the first integral. For the time term, we have

∂tH(v)Ψ ′(v)Ψ(v) = ∂t

∫ v

v−

H′(ξ)Ψ ′(ξ)Ψ(ξ) dξ

and integration by parts gives that∫
Br/8×(T ,τ)

∂tH(v)Ψ ′(v)Ψ(v)φp dx dt =

∫
Br/8

∫ v(·,τ)

v−

H′(ξ)Ψ ′(ξ)Ψ(ξ) dξ φp dx

∣∣∣∣τ
t=T

,

since φ is time independent; here, we have also used the fact that v ∈ C(Qωr ). Since
v ≤ v− on Br/8 × {T}, we have that∫

Br/8

∫ v(·,T )

v−

H′(ξ)Ψ ′(ξ)Ψ(ξ) dξ φp dx = 0 .

Therefore∫
Br/8×(T ,τ)

∂tH(v)Ψ ′(v)Ψ(v)φp dx dt =

∫
Br/8

∫ v(·,τ)

v−

H′(ξ)Ψ ′(ξ)Ψ(ξ) dξ φp dx

and since H′ ≥ 1 and Ψ(v−) = 0, we obtain that∫
Br/8

Ψ2(v(x, τ))φp dx ≤ 2

∫
Br/8×(T ,τ)

∂tH(v)Ψ ′(v)Ψ(v)φp dx dt.

As for the elliptic term, we get, from (2.4), since Ψ(v)δv−v− = 0,

−
∫
Br/8×(T ,τ)

〈Ã(Dv), Dη〉 dx dt = −
∫
Br/8×(T ,τ)

〈Ã(Dv), Dφp〉Ψ ′(v)Ψ(v) dx dt
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−
∫
Br/8×(T ,τ)

〈Ã(Dv), Dv〉
(
1 + Ψ(v)

)
[Ψ ′(v)]

2
φp dx dt

≤ c(p,Λ)

∫
Br/8×(0,Tωr )

Ψ(v) [Ψ ′(v)]
2−p |Dφ|p dx dt

− c(p,Λ)

∫
Br×(T ,τ)

|Dv|p(1 + Ψ(v)) [Ψ ′(v)]
2
φp dx dt ,

using Young’s inequality. We thus obtain, discarding the negative term on the
right-hand side,∫

Br/8

Ψ2(v(·, τ))φp dx ≤ c
∫
Qωr

Ψ(v) [Ψ ′(v)]
2−p |Dφ|p dx dt ;

this holds for all τ ∈ (T , Tωr ]. The very definitions of Ψ and Tωr then imply∫
Br/16

[Ψ(v(·, τ))]
2
dx ≤ c

|Br/8|Tωr
rp

ln
1

ς
(2S+)p−2 ≤ cM |Br/16| ln

1

ς
,

since (v − k)+ ≤ S+ and

r−p Tωr (2S+)p−2 = 2p−2Mω(2−p)(1+1/α)

(
ω1+1/α

8

)p−2

= 42−pM .

Moreover, the left-hand side can be bounded below as∫
Br/16

[Ψ(v(·, τ))]
2
dx ≥

∣∣Br/16 ∩
{
v(·, τ) ≥ osc v − ςS+

}∣∣(ln
1

2ς

)2

and we conclude, recalling the definition of S+, that∣∣Br/16 ∩
{
v(·, τ) ≥ osc v − ς ω1+1/α

}∣∣
|Br/16|

≤ cM
ln 1

ς

ln 1
2ς

= ν∗ ,

for a convenient choice of ς. Finally, integrate in time to obtain (2.9) and complete
the proof. �

2.5. Supersolutions of evolutionary p-Laplace equations. We recall that a
weak supersolution to

∂tv − div Â(x, t, v,Dv) = 0 in B × Γ , (2.10)

B open set and Γ open interval, where Â has the same structure of Ã (and A), is
a function w ∈ V 2,p(B × Γ) satisfying∫

K
[wϕ](·, τ) dx

∣∣∣∣t2
τ=t1

+

∫
K×[t1,t2]

[
− w ∂tϕ+ 〈A(·, ·, w,Dw), Dϕ〉

]
dx dt ≥ 0

for all K b B, almost every t1, t2 ∈ R such that [t1, t2] b Γ and for every test

function ϕ ∈ Lploc(Γ;W 1,p
0 (K)) such that ∂tϕ ∈ L2(K × [t1, t2]) and ϕ ≥ 0. Anal-

ogously, w is a weak subsolution if the quantity on the left-hand side in (2.10) is
non-positive for any such test function. The following simple lemma is one of the
keys in our proof of the interior continuity.

Lemma 2.3. If k < b− ε and v is a weak solution of (2.6) in Qωr , then (k− v)+ is
a weak subsolution and min(k, v) = k − (k − v)+ is a weak supersolution of (2.10)

in Qωr , where Â has the same structure of A.
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Proof. Let K b Br, [t1, t2] b (0, Tωr ), call Q := K × [t1, t2] and let ϕ be a test
function as above, in particular non-negative; in order to simplify the proof we
suppose ϕ ≡ 0 in K×{t1, t2}, it will be easy to deduce the proof also in the general
case. Set

φk,ε(ξ) = min

{
(k − ξ)+

ε
, 1

}
, for ε ∈ (0, 1) ,

and test equation (2.6) with φk,ε(v)ϕ. Formally, the time derivative terms give∫
Q
∂tvφk,ε(v)ϕdxdt = −

∫
Q
∂t

∫ k

v

φk,ε(ξ) dξ ϕ dx dt

=

∫
Q

∫ k

v

φk,ε(ξ) dξ ∂tϕdx dt

ε↓0−→
∫
Q

(k − v)+ ∂tϕdx dt , (2.11)

by the dominated convergence theorem, and

−
∫
Q
∂tvH

′
b,ε(v)φk,ε(v)ϕdxdt =

∫
Q
∂t

∫ k

v

H ′b,ε(ξ)φk,ε(ξ) dξ ϕ dx dt

= −
∫
Q

∫ k

v

H ′b,ε(ξ)φk,ε(ξ) dξ ∂tϕdx dt

= 0 ,

since suppH ′b,ε ⊂ (b − ε, b + ε) does not intersect the integration interval (v, k)
due to the fact that we assume k < b − ε. As for the elliptic part, noting that
φ′k,ε(v) = − 1

εχ{k−ε<v<k} ≤ 0 and hence∫
Q

〈
Ã(x, t, v,Dv), Dφk,ε(v)

〉
ϕdx dt ≤ 0 ,

we obtain ∫
Q

〈
Ã(x, t, v,Dv), D

[
φk,ε(v)ϕ

]〉
dx dt

≤
∫
Q

〈
Ã(x, t, v,Dv), Dϕ

〉
φk,ε(v) dx dt

ε↓0−→
∫
Q

〈
Ã(x, t, v,Dv), Dϕ

〉
χ{v<k} dx dt ,

yielding the conclusion for (k − v)+, once we define Â(x, t, w, ξ) := −Ã(x, t, k −
w,−ξ). The second result follows immediately from this one.

To justify the above calculations, we demonstrate how to rigorously test equa-
tion (2.6) with a test function depending on v itself; indeed, there is a well recognized
difficulty concerning the time regularity of solutions and one has to suitably mollify
the test function in time. To this end, take ρh(s), for h ∈ (0, 1), the standard
symmetric positive mollifier, with support in (−h, h) and denote, for any function
θ : R→ R, its mollification by θh := θ ∗ ρh. If θ is not defined over R, extend it to
zero elsewhere before mollifying. Let f : R+ → R+ be any Lipschitz function; note
that, for H(·) defined in (2.7), we have that v 7→ H(v) is an increasing function.
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Therefore, consider as a test function in (2.6) the function

φ ≡ φh :=
[
f
(
H−1([H(v)]h)

)
ϕ
]
h
,

for h > 0 small, where [H(v)]h is the convolution of H(v) with respect to the time
variable and ϕ is as in the beginning of the proof. Note finally that since ρh is
symmetric, then

∫
fgh dt =

∫
fhg dt by Fubini’s theorem; therefore, first using this

fact and subsequently integrating by parts, we get

−
∫
B

∫
Γ

H(v)∂tφh dt dx =

∫
B

∫
Γ

∂t[H(v)]hf
(
H−1([H(v)]h)

)
ϕdt dx

= −
∫
B

∫
Γ

∂t

∫ H(k)

[H(v)]h

f
(
H−1(ζ)

)
dζ ϕ dt dx

=

∫
B

∫
Γ

∫ H(k)

[H(v)]h

f
(
H−1(ζ)

)
dζ ∂tϕdt dx

h↓0−→
∫
Q

∫ H(k)

H(v)

f
(
H−1(ζ)

)
dζ ∂tϕdx dt

=

∫
Q

∫ k

v

f(ξ)
(
1 +H ′b,ε(ξ)

)
dξ ∂tϕdx dt ,

recalling the definition of H. In the case f(ξ) = φk,ε(ξ), for ε ∈ (0, 1), we then also
take the limit for ε ↓ 0 as in (2.11) and we discard the remaining null term. As for
the elliptic part we may use dominated convergence, together with the fact that
v ∈ Lp(t1, t2;W 1,p(K)), and send first h and then ε to zero to follow the formal
calculation in the beginning of the proof. �

2.6. Harnack estimates. The following weak Harnack inequality for supersolu-
tions is Theorem 1.1 of [21].

Theorem 2.4 (Weak Harnack inequality). Let v be a non-negative continuous weak
supersolution to

∂tv − divA(x, t, v,Dv) = 0 in B4R0(x0)× (0, T ) , (2.12)

with A satisfying (1.8). Then there exist constants c1 and c2, both depending only
on n, p and Λ, such that for every 0 < t1 < T we have∫

BR0
(x0)

v(x, t1) dx ≤ 1

2

(
c1R

p
0

T − t1

)1/(p−2)

+ c2 inf
Q
v , (2.13)

where Q := B2R0
(x0)× (t1 + τ/2, t1 + τ) and

τ := min

{
T − t1, c1Rp0

( ∫
BR0

(x0)

v(x, t1) dx

)2−p}
. (2.14)

The factor 1/2 in the above theorem is not present in the formulation of [21].
Nonetheless, this constant is insignificant as it only increases the value of the con-
stants c1 and c2, a fact that can be easily deduced from the proof in [21]. For
related results, see the recent interesting monograph by DiBenedetto, Gianazza
and Vespri [13], and also [12], by the same authors, about the Harnack inequality
for weak solutions.
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The next proposition, which encodes the decay rate of supersolutions, follows
from the iteration of the previous theorem; see [17, Corollary 3.4] for a very similar
statement.

Proposition 2.5 (Decay of positivity). Let v be a non-negative continuous weak
supersolution to (2.12) in B4R0

(x0)× (t0, t0 + T ). Then there exists a constant c3,
depending only on n, p and Λ, such that, if

inf
x∈B2R0

(x0)
v(x, t0) ≥ k (2.15)

for some level k > 0, then

inf
x∈B2R0

(x0)
v(x, t) ≥ λ(t) :=

k

c3

(
1 + c3(p− 2)kp−2 t− t0

Rp0

)− 1
p−2

for all t ∈ (t0, t0 + T ].

Proof. Suppose, without loss of generality, that t0 = 0. Define inductively

τ0 := t0 = 0, τj := c1R
p
0

j∑
`=1

( ∫
BR0

(x0)

min
{
v(·, τ`−1), (2c2)−`k

}
dx

)2−p

,

for all indices j such that τj ≤ T , say j ∈ {1, . . . , ̄}, and where c2 is the constant
of Theorem 2.4. Note that, for i ∈ {1, . . . , ̄}, there holds(

c1R
p
0

τi − τi−1

) 1
p−2

=

∫
BR0

(x0)

min
{
v(·, τi−1), (2c2)−ik

}
dx ;

hence, since τ in (2.14) turns out to be, in our case, exactly τi − τi−1, Harnack
estimate (2.13) applied to the supersolution vi := min{v, (2c2)−ik} gives

inf
B2R0

(x0)×((τi−1+τi)/2,τi)
vi ≥

1

2c2

∫
BR0

(x0)

vi(·, τi−1) dx ≥ k

(2c2)i
, (2.16)

and the last inequality holds if infBR0
(x0) vi(·, τi−1) ≥ (2c2)−(i−1)k. Using an itera-

tive argument, starting from (2.15), we see that (2.16) holds for any j ∈ {1, . . . , ̄}.
This means that, for such a j, we have vj(x, τj) = (2c2)−jk in BR0

(x0) and

τj = c1k
2−pRp0

∑j
`=1(2c2)`(p−2). Therefore,∫ j

0

(2c2)s(p−2) ds ≤ τj
c1k2−pRp0

≤
∫ j+1

1

(2c2)s(p−2) ds

and we thus obtain a lower and an upper bound for τj :

(2c2)j(p−2) − 1

(p− 2) ln(2c2)
≤ τj
c1k2−pRp0

≤ 2c2
(2c2)j(p−2) − 1

(p− 2) ln(2c2)
.

The bound from below gives

(2c2)−j ≥
(

1 + (p− 2)
ln(2c2)

c1

τj
k2−pRp0

)−1/(p−2)

≥ c3
k
λ(τj) ,

provided that c3 ≥ ln(2c2)/c1. Finally, taking into account that vi ≤ v, another
application of (2.16), for an appropriate R0, and with starting time τj−1, together
with a simple covering argument, shows that

inf
B2R0

(x0)×(τj−1,τj)
v ≥ 1

2c2
c3λ(τj−1) ≥ λ(τ)
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whenever τ ∈ (τj−1, τj), provided that c3 ≥ 2c2. Clearly, at this point, taking
c3 := 2c2 ≥ ln(2c2)/c1 finishes the proof. �

3. Reducing the oscillation

Recalling now the definitions of Q̃ωr and Qωr from subsection 2.3, we suppose that
w is a weak solution to (2.3) in Qωr . Note that one can also take as ω the value ω(r);
this would mean essentially proving Theorem 1.1 without passing trough Theorem
4.1, see the somehow different proof we give in [3].

3.1. Basic reductions. Define

v(x, t) := w(x, t)− inf
Qωr

w and b := a− inf
Qωr

w . (3.1)

Then sup v = osc v = oscw, inf v = 0, these quantities being meant over Qωr , and

∂tv − div Ã(x, t, v + inf
Qωr

w,Dv) = −L̃h ∂tHb,ε(v) , (3.2)

L̃h ∈ [0, 1]. From now on we shall also suppose that

osc v := osc
Qωr

v ≥ ω and ε <
ω

8
. (3.3)

Note that if b /∈ [0, osc v], we then have

∂tv − div Ã(x, t, v + inf
Qωr

w,Dv) = 0 in Qωr

for ε small enough, and the oscillation reduction follows by the well-known argument
of DiBenedetto, see [10, 33]. In this case, even if the modulus of continuity is Hölder,
we will not make use of this information since the intrinsic geometry we are using
does not allow us to reproduce the estimates of [10, 33]. We, instead, observe that
our reasoning also works in the case of evolutionary p-Laplace type equations since

the phase transition term L̃h ∂tHb,ε only appears as an inhomogeneous term in our

calculations, and in particular it works for L̃h = 0.
Thus we may assume from now on b ∈ [0, osc v]. If b ∈

[
0, osc v

2

]
, we can consider

v̄ = osc v − v and b̄ = osc v − b instead, and then

∂tv̄ − div Ā(x, t, v̄, Dv̄) = −L̃h ∂tHb̄,ε(v̄)

with b̄ ∈
[

osc v̄
2 , osc v̄

]
. Here

Ā(x, t, v̄, Dv̄) = −Ã(x, t,−v̄ + sup
Qωr

w,−Dv̄) ,

which has the same structure as A. Consequently we can further assume that

b ∈
[osc v

2
, osc v

]
.

Let us, finally, introduce the Sobolev conjugate exponent of p, κp, where

κ :=


n
n−p for p < n ,

any number > 1 for p = n ,

+∞ for p > n ;

(3.4)

α, appearing in (1.10), will be related to κ in the following way:

1

α
= 1 +

κ

κ− 1
. (3.5)
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From now on, it will be more convenient for our purposes to work with κ.

Now we fix the classical alternative. Clearly one of the following two options
must hold: for ε1 a free parameter, to be fixed in due course, either∣∣∣Q̃ωr ∩ {v ≥ osc v

4

}∣∣∣ > ε1ω
1+ κ

κ−1

∣∣Q̃ωr ∣∣ (Alt. 1)

or ∣∣∣Q̃ωr ∩ {v ≥ osc v

4

}∣∣∣ ≤ ε1ω
1+ κ

κ−1

∣∣Q̃ωr ∣∣ (Alt. 2)

holds true. We analyze separately the two different cases.

3.2. The first alternative. Consider first the case where (Alt. 1) holds. Then

there exists t1r ∈ (0, T̃ωr ) such that∣∣∣Br/4 ∩ {v(·, t1r) ≥
osc v

4

}∣∣∣ > ε1ω
1+ κ

κ−1

∣∣Br/4∣∣ ; (3.6)

otherwise, just integrate to get a contradiction.

Observing that, due to (3.3),
osc v

4
<

osc v

2
− osc v

8
≤ b− ω

8
< b− ε,

we can use the weak Harnack estimate on the supersolution v̂ := min{v, osc v/4}.
Thus, Lemma 2.3, and hence Theorem 2.4, apply to v̂:∫

Br/4

v̂(x, t1r) dx ≤
1

2

(
c1(r/4)p

Tωr − t1r

) 1
p−2

+ c2 inf
Br/2×(t1r+τ/2,t1r+τ)

v̂ , (3.7)

where

τ = min

{
Tωr − t1r, c1

(r
4

)p(∫
Br/4

v̂(x, t1r) dx

)2−p
}
.

Due to (3.6), ∫
Br/4

v̂(x, t1r) dx ≥ ε1ω
1+ κ

κ−1
osc v

4
≥ ε1

4
ω2+ κ

κ−1 , (3.8)

where the last inequality follows from (3.3). Now, if

Tωr − t1r ≥ c1
(r

4

)p(∫
Br/4

v̂(x, t1r) dx

)2−p

, (3.9)

then

τ = c1

(r
4

)p(∫
Br/4

v̂(x, t1r) dx

)2−p

and c1

(r
4

)p
Tωr − t1r


1
p−2

≤


c1

(r
4

)p
c1

(r
4

)p(∫
Br/4

v̂(x, t1r) dx

)2−p


1
p−2

=

∫
Br/4

v̂(x, t1r) dx .

So (3.7) reads ∫
Br/4

v̂(x, t1r) dx ≤ 2c2 inf
Br/2×(t1r+τ/2,t1r+τ)

v̂
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and consequently, combining the previous display with (3.8), we get

ε1

8c2
ω2+ κ

κ−1 ≤ inf
Br/2×(t1r+τ/2,t1r+τ)

v̂ . (3.10)

Hence if (3.9) holds, then we infer (3.10). Note now that, in particular, if we fix

M := 1 +
ε2−p

1 c1
16

≥ 2(2Λ)p−2 ≥ 2 (3.11)

in the definition of Tωr , provided that εp−2
1 ≤ c1(2Λ)p−2/16, then

Tωr − T̃ωr ≥ Tωr − ω(2−p)(2+ κ
κ−1 )rp = ε2−p

1 c1r
pω

(2−p)(2+ κ
κ−1 )

16
.

Thus we have, by (3.8), that

Tωr − t1r ≥ Tωr − T̃ωr = c1

(r
4

)p(ε1

4
ω2+ κ

κ−1

)2−p

≥ c1
(r

4

)p(∫
Br/4

v̂(x, t1r) dx

)2−p

= τ

and hence (3.9) is satisfied.

Now the goal is to push positivity at time t1r + τ up to time Tωr ; note that by
(3.9) and subsequent lines, t1r + τ ≤ Tωr . To do this, we use Proposition 2.5, with

k = ε1ω
2+ κ

κ−1 /(8c2), to obtain

inf
Br/2×(t1r+τ/2,Tωr )

v̂ ≥ k

c3

(
1 + c3(p− 2)kp−2T

ω
r − (t1r + τ/2)

(r/4)p

)− 1
p−2

≥ ε1

8c2c3
ω2+ κ

κ−1
(
1 + c̃ c3(p− 2)

)− 1
p−2 ,

since

Tωr −
(
t1r +

τ

2

)
≤ Tωr ≤

c1

8εp−2
1

ω(2−p)(2+ κ
κ−1 )rp = c̃ k2−prp ,

c̃ depending on p, c1, c2 and hence, ultimately, only on n, p and Λ. Recalling that,

clearly, v̂ ≤ v, and noting that τ ≤ Tr − T̃ωr and T̃ωr ≤ Tωr /2, by (3.9) and (3.11),
we conclude that the infimum of v has been lifted and thus we have reduced the
oscillation: we have indeed proved that

(3.3) and (Alt. 1) =⇒ osc
Br/4×(3Tωr /4,T

ω
r )

v ≤ osc
Qωr

v − θ1ω
2+ κ

κ−1 , (3.12)

with θ1 ≡ θ1(n, p,Λ, ε1) ∈ (0, 1).

3.3. The second alternative. Let us now consider the case when the second
alternative (Alt. 2) holds:∣∣∣Q̃ωr ∩ {v ≥ osc v

4

}∣∣∣ ≤ ε1ω
1+ κ

κ−1

∣∣Q̃ωr ∣∣ .
We shall use this information as a starting point for a De Giorgi-type iteration,
where we fix the sequence of nested cylinders as

Uj = Bj × Γj := B(1+2−j)r/8 ×
(

1− 2−j

2
T̃ωr , T̃

ω
r

)
,
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and we consider cut-off functions φj such that

φj ≡ 1 in Uj+1 and φj = 0 on ∂pUj ,

with (
∂tφ

p
j

)
+
≤ c 2j

T̃ωr
and |Dφj | ≤

c 2j

r
. (3.13)

Using then the energy estimate (2.8), with κ defined in (3.4) (with the formal
agreement that when κ =∞, 1− 1/κ = 0 and( ∫

Bj

[(v − k)+φj ]
κp
dx

)1/κ

:=
∥∥(v − k)+φj

∥∥p
L∞(Bj)

),

we infer∫
Uj+1

(v − k)
2(1−1/κ)+p
+ dx dt

≤
∫
Uj

[
(v − k)2

+φ
p
j

](1−1/κ)
(v − k)p+φ

p
j dx dt

≤
∫

Γj

[∫
Bj

(v − k)2
+φ

p
j dx

]1−1/κ[∫
Bj

[(v − k)+φj ]
κp
dx

]1/κ

dt

≤ c
[
T̃ωr
]1−1/κ

[
sup
t∈Γj

1

T̃ωr

∫
Bj

[
(v − k)2

+φ
p
j

]
(·, t) dx

]1−1/κ

×

× rp
∫
Uj

∣∣D [(v − k)+φj ]
∣∣p dx dt

≤ c rp
[
T̃ωr
]1−1/κ

[ ∫
Uj

(
(v − k)p+|Dφj |p

+
[
(v − k)2

+ + L̃h (b+ ε− k)+χ{v≥k}

] (
∂tφ

p
j

)
+

)
dx dt

]2−1/κ

,

using Hölder’s inequality and Sobolev’s embedding. The next step is to choose the
levels

kj := osc v − 1 + 2−j

4
ω .

We have kj >
osc v

4 , since ω ≤ osc v, and the relations

(v − kj)+ ≥ (kj+1 − kj)χ{v≥kj+1} = 2−j−3ωχ{v≥kj+1} ,

(v − kj)+ ≤ ωχ{v≥kj} ,

(b+ ε− kj)+ ≤ ω (since b ≤ osc v and ε ≤ ω/8) .

We go back to the iteration inequality, with the notation

Aj :=
|Uj ∩ {v ≥ kj}|

|Uj |
,

to obtain, using the definition of Tωr (2.5) and (3.13)(
2−j−3ω

)2(1−1/κ)+p
Aj+1

≤ c rp
[
T̃ωr
]1−1/κ

[
2j

ω

T̃ωr
+ 2j

ω2

T̃ωr
+ 2jp

ω(r)p

rp

]2−1/κ

A
2−1/κ
j
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≤ cjrp
[
rpω2−p]1−1/κ

[
ωp−1

rp
+
ωp

rp

]2−1/κ

A
2−1/κ
j

≤ cjω(2−p)(1−1/κ)+(p−1)(2−1/κ)A
2−1/κ
j .

Note here that we also appealed to the fact that 0 ≤ L̃h ≤ 1. Thus,

Aj+1 ≤ cj0 ω(2−p)(1−1/κ)+(p−1)(2−1/κ)−p−2(1−1/κ)A
2−1/κ
j

= cj0 ω
−(2−1/κ)A

2−1/κ
j ,

where the constant c0 depends only on n, p,Λ and κ. The lemma on the fast
convergence of sequences asserts that Aj → 0 if

A0 ≤ c−(1−1/κ)−2

0 ω
2κ−1
κ−1 ,

which is exactly our assumption (Alt. 2), once we fix the value of ε1 as

ε1 := min
{
c
−(1−1/κ)−2

0 ,
1

2Λ

( c1
16

)1/(p−2)}
.

We conclude that

v ≤ osc v − ω

4
in Br/8 ×

(
T̃ωr /2, T̃

ω
r

)
. (3.14)

Note that ε1 is a quantity depending only on n, p,Λ and κ through the dependencies
of c0 and c1. This, via (3.11), fixes also the value of M as a constant depending
only on n, p,Λ and possibly on κ.

We next need to forward this information in time, and to do this we first use the
logarithmic Lemma 2.2 and then another De Giorgi iteration. Note, indeed, that
now M ≡M(n, p,Λ, κ) is fixed; hence, for ν∗ ∈ (0, 1) to be chosen, (3.14) together
with Lemma 2.2 yields∣∣∣(Br/16 × (T̃ωr /2, T

ω
r )
)
∩
{
v ≥ osc v − ς ω2+ κ

κ−1
}∣∣∣∣∣Br/16 × (T̃ωr /2, T

ω
r )
∣∣ ≤ ν∗,

for a constant ς ≡ ς(n, p,Λ, κ, ν∗) ∈ (0, 1); this will be the starting point of our
second iteration. Let indeed

Vj := B(1+2−j)r/32 ×
(
T̃ωr , T

ω
r

)
, Bj := B(1+2−j)r/32 ,

and consider smooth cut-off functions φj , depending only on the spatial variables,
such that

φj ≡ 1 in Bj+1 and φj = 0 on ∂Bj , with |Dφj | ≤
c 2j

r
.

If we choose a level such that k ≥ osc v − ω/4, then

(v − k)+φ
p = 0 on ∂pVj (3.15)

by (3.14), so recalling that 1/α = 1 + κ/(κ− 1), we put

kj = osc v − (1 + 2−j)

8
ς ω2+ κ

κ−1 = osc v − (1 + 2−j)

8
ς ω

α+1
α ;

note that kj ≥ osc v − ω/4. We redefine

Aj :=
|Vj ∩ {v ≥ kj}|

|Vj |



QUANTITATIVE MODULUS OF CONTINUITY 19

and observe that

(v − kj)+ ≤ ς ω
α+1
α and (v − kj)+ ≥ 2−j−4ς ω

α+1
α χ{v≥kj+1} .

Using again Caccioppoli’s estimate,[
2−j−4ς ω

α+1
α

]p+ 2α
1−α

Aj+1 ≤ c rp
[
Tωr
] α

1−α

[
2jp
[
ς ω

α+1
α

]p
rp

] 1
1−α

A
1

1−α
j

because of (3.15) and the fact that φ is time independent. This implies

Aj+1 ≤ cjM
α

1−α r
p

1−α ς
p

1−α−p−
2α

1−α

× ω(2−p)(α+1
α ) α

1−α+(α+1
α )[ p

1−α−(p+ 2α
1−α )]

r
p

1−α
A

1
1−α
j

= cjM
α

1−α ς
α

1−α (p−2)A
1

1−α
j

≤ c̃jM
α

1−αA
1

1−α
j ,

since ς < 1, and for c̃ depending on n, p,Λ and κ; recall indeed again that M ≡
M(n, p,Λ, κ) has already been fixed. The sequence Aj is then infinitesimal if

A0 ≤ c̃−( 1−α
α )2

M−1 =: ν∗ ;

this fixes the value of ς and also in this case we can conclude

(3.3) and (Alt. 2) =⇒

osc
Br/32×(T̃ωr ,T

ω
r )
v = sup

Br/32×(T̃ωr ,T
ω
r )

v ≤ osc
Qωr

v − θ2ω
2+ κ

κ−1 , (3.16)

if we call θ2 ≡ θ2(n, p,Λ, κ) := ς/8 ∈ (0, 1); recall that T̃ωr ≤ Tωr /2. We have
succeeded yet again to reduce the oscillation.

4. Deriving the modulus of continuity

Theorem 1.1 will follow essentially as corollary of the following theorem, whose
proof consists in the iteration of the argument of the previous section.

Theorem 4.1. Let u be a local weak solution to (1.7), obtained by approximation.

There exists a constant M̃ , depending on n, p,Λ, α, with α defined in (1.10), such
that if

osc
Q0

u ≤ 1, Q0 = BR(x0)× (t0 − M̃Rp, t0) ⊂ ΩT

then

osc
Qj

u ≤ c(p,Λ)ωj , j ∈ N0 , (4.1)

where

Qj := BRj (x0)× (t0 − M̃ω
(2−p)(1+1/α)
j Rpj , t0), Rj := 32−jR (4.2)

and the sequence ωj is defined by

ωj+1 := max
{
ωj(1− ϑω1/α

j ), 2−
25p
p−2ωj

}
, for j ∈ N, ω0 = 1 , (4.3)

for a constant ϑ ∈ (0, 1) depending only on n, p,Λ, α.
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Remark 4.4. The requirement that ωj+1 ≥ 2−
25p
p−2ωj is necessary in order to ensure

that ω
(2−p)(1+1/α)
j Rpj/4 ≥ ω

(2−p)(1+1/α)
j+1 Rpj+1 and in particular Qj+1 ⊂ Qj ; if p = 2,

such requirement is clearly not needed (in this sense, 2−
25p
p−2 = 0 by definition if

p = 2). In the case p 6= 2 it is still not really relevant, since, for ωj small, ωj+1

clearly equals ωj(1− ϑω1/α
j ).

Proof. Take M̃ := (2Λ)2−pM ≥ 1, where M ≥ (2Λ)p−2 is the constant being fixed
in (3.11) and take ε̃ small enough so that oscQ0 uε ≤ 2 for any ε ≤ ε̃; notice now
that Q0 is fixed and uε is the approximating solution, solving (2.1), that we suppose
to locally uniformly converge to u; ε̃ could depend on the starting cylinder in (4.11)
but this is not a problem here. Now scale uε as described in subsection 2.2, with
r = R, T0 = t0−MRp, T = MRp and λ = 2Λ; this allows to obtain solutions ūε in

Q̂0 = BR × (t0 −MRp, t0) = BR × (t0 − T 1
R, t0) ,

T 1
R as in subsection 2.3 with ω = 1. Note that oscQ̂0

ūε ≤ [oscQ0
uε]/(2Λ) ≤ 1/Λ.

We shall further consider w = β(ūε) as in (2.2); observe that, by the Lipschitz
regularity of β, we have

osc
Q̂0

w = osc
Q̂0

β(ūε) ≤ Λ osc
Q̂0

ūε ≤ 1 .

Finally, we shall also translate our solution w to v as in (3.1); notice that also
oscQ̂0

v ≤ 1. We now fix ϑ := min{θ1, θ2}/32 (see (3.12) and (3.16)) and, since now

{ωj} is given, we shall show that if ε < ωı̄/8 for some ı̄ ∈ N0, then

osc
Q̂i

v ≤ 32ωi (4.5)

for all i ∈ {0, 1, . . . , ı̄ + 1}, where Q̂i = BRi(x0) × (t0 −Mω
(2−p)(1+1/α)
i Rpi , t0) -

note we are considering here cylinders whose length depends on M , not on M̃ ; this
is done for scaling reasons. Incidentally, observe also that, by direct computation,
the “doubling” property ωi ≤ 32ωi+1 holds true for any i ∈ N0. From the analysis
of Section 3, we get that if ωi ≤ oscQ̂i v and ε < ωi/8, then

osc
Q̂i+1

v ≤ osc
Q̂i

v − 32ϑω
2+ κ

κ−1

i . (4.6)

Indeed, following again subsection 2.2, rescale v defined in Q̂i to v̄ in Bri × (0, Tωiri )
(take simply λ = 1 now); since ωi ≤ oscBri×(0,T

ωi
ri

) v̄, (3.12) and (3.16) give

osc
Bri/32×( 3

4T
ω
ri
,Tωri

)
v̄ ≤ osc

Bri×(0,T
ωi
ri

)
v̄ − 32ϑω

2+ κ
κ−1

i

and, after scaling back, (4.6) is a consequence of the fact that T
ωi+1
ri+1 ≤ 1

4T
ωi
ri , see

Remark 4.4.

Suppose then that (4.5) holds for i ∈ {0, 1, . . . , j}, with j ≤ ı̄ and let us prove
that it holds for j + 1; note that, by the monotonicity of ωi, we have ε < ωi/8
for i ∈ {0, 1, . . . , j}. Let now i∗ be the largest integer in {0, 1, . . . , j} such that
oscQ̂i∗ v ≤ ωi∗ holds; note that such an index exists since oscQ̂0

v ≤ 1 = ω0, and

this fixes the inductive starting step. If i∗ = j, then the induction step follows from
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the “doubling” property of ωi. Assume then that i∗ < j so that, by the induction
assumption, we have

ωi < osc
Q̂i

v ≤ 32ωi, ∀ i ∈ {i∗ + 1, . . . , j} .

Therefore, (4.6) is at our disposal for any such index (recall ε < ωi/8, for all i ≤ j)
and it leads to

osc
Q̂i+1

v ≤ osc
Q̂i

v − 32ϑω
2+ κ

κ−1

i ≤
(

1− ϑω1+ κ
κ−1

i

)
osc
Qi

v,

for i ∈ {i∗ + 1, . . . , j}. Iterating and using (4.3), which implies

ωj+1 ≥
j∏
i=k

(
1− ϑω1+ κ

κ−1

i

)
ωk, for any j + 1 ≥ k ≥ 0

(recall that 1/α = 1 + κ/(κ− 1)), and the fact that oscQi∗+1
v ≤ oscQi∗ v ≤ ωi∗ ≤

32ωi∗+1, we get

osc
Q̂j+1

v ≤
j∏

i=i∗+1

(
1− ϑω1+ κ

κ−1

i

)
ωi∗ ≤

ωj+1

ωi∗+1
ωi∗ ≤ 32ωj+1

and the (finite) induction is complete. Now (4.5) yields

osc
Q̂i

v ≤ 32ωi + 28ε, for all i ∈ N0,

since if i > ı̄ + 1 we simply have oscQ̂i v ≤ oscQı̄+1
v ≤ 32ωı̄+1 < 28ε. It remains

to translate this information back to w = β(ūε), and then back again to uε on the
cylinders Qi defined in (4.2), and this yields a multiplicative factor Λ1−p22−p on
the right-hand side. Finally, we can let ε ↓ 0 to conclude with (4.1). �

Remark 4.7. We stress that the previous theorem holds for any choice of numbers
{ωj} such that

ωj+1 ≥ ωj(1− ϑω1/α
j ), for j ∈ N, ω0 = 1 , (4.8)

ϑ as in the statement, provided that the time scales are monotone, that is

ω
(2−p)(1+1/α)
j+1 Rpj+1 ≤

1

4
ω

(2−p)(1+1/α)
j Rpj .

Indeed, by enlarging ωj , we also reduce the size of the cylinder Qj .

4.1. An explicit modulus. We now show how the results of the previous section
can lead to Theorem 1.1; firstly, we fix the value of L as follows:

L := max
{(α ln 32

ϑ

)α
, 2pα

}
, (4.9)

for α defined in (1.10) and ϑ as above. We stress that this in particular gives

ω(r) ≥
(α ln 32

ϑ

)α[
p+ ln

(r0

r

)]−α
. (4.10)

Now we consider a cylinder Q
ω(·)
r0 ⊂ ΩT , where

Qω(·)
r := Br(x0)× (t0 −max{osc

ΩT
u, 1}2−pTω(·)

r , t0) ; (4.11)
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T
ω(·)
r = M [ω(r)](2−p)(1+1/α)rp, with M being fixed in (3.11) and ω(·) now is defined

according to the choice of L performed above. These will be the cylinders considered
in (1.12).

We shall now show how to use Theorem 4.1 to deduce Theorem 1.1 with the
choice M = M̃ . Consider a solution over Q

ω(·)
r0 as in the statement of Theorem

1.1 and, following subsection 2.2, rescale it with T0 = t0 − Tω(·)
r0 , T = T

ω(·)
r0 and

λ := max{oscΩT u, 1}, to a solution, which, with a small abuse of notation, we still
call u, in

Br0(x0)× (t0 − M̃rp0 , t0) with osc
Br0 (x0)×(t0−M̃rp0 ,t0)

u ≤ 1 . (4.12)

We put Q
ω(·)
r (x0, t0) := Br(x0)× (t0− M̃rp, t0). Now we choose the initial cylinder

of Theorem 4.1 as follows: noting that ω(r0) ≥ 1, ω(%) → 0 as % ↓ 0 and ω(·) is
continuous and increasing, we take the largest (and unique) radius r̃ ∈ (0, r0] such
that ω(r̃) = 1. The radius r̃ can be written as r0/c̃, where c̃ depends only on n, p,Λ
and α, and

osc
Q0

u := osc
Q
ω(·)
r̃ (x0,t0)

u ≤ 1 .

We let, for i ∈ N0, rj := 32−j r̃ and we claim that ωj := ω(rj) is a legitimate
choice in Theorem 4.1, also in light of Remark 4.7. Monotonicity of time scales is

a consequence of the fact that T
ω(·)
ri+1 ≤ 1

4T
ω(·)
ri : a direct calculation shows that

ω′(%)%

ω(%)
≤ α

p
for 0 < % ≤ r0 =⇒ ω(%2)

ω(%1)
≤
(%2

%1

)α
p

for %1 ≤ %2 ≤ %0 . (4.13)

Moreover, ω′′(ρ) ≤ 0 for ρ ≤ r0 if p+ln(r0/ρ) ≥ α+1, and hence ω is concave. Then

we have at hand the shrinking sequence of cylinders {Qj}, with Q0 = Q
ω(·)
r̃ (x0, t0);

observe also that Q
ω(·)
rj (x0, t0) = Qj . We check that (4.8) holds in the following

way: using the elementary estimate 1− x ≤ e−x, we see that

1− ϑ
[
ω(rj)

]1/α ≤ exp
(
−ϑ[ω(rj)]

1/α
)

≤ exp

(
−α

∫ rj

rj+1

1

p+ ln
(
r0
ρ

) dρ
ρ

)

= exp

(
−α

[
ln ln

( epr0

rj+1

)
− ln ln

(epr0

rj

)])
= exp

(
− ln

[
p+ ln

(
r0
rj+1

)
p+ ln

(
r0
rj

) ]α) =
ωj+1

ωj
;

we also used the fact that, by the monotonicity of ω(·) and (4.10), we have[
ω(rj)

]1/α ≥ 1

ln 32

∫ rj

rj+1

[
ω(ρ)

]1/α dρ
ρ
≥ α

ϑ

∫ rj

rj+1

[
p+ ln

(r0

ρ

)]−1 dρ

ρ
,

for all j ∈ N0. Finally, by our definition, ω0 = ω(r0) = ω(r̃) = 1.

To conclude, for the convenience of the reader, we briefly show how (4.1) implies
(1.13). Indeed, for a radius r ∈ (0, r̃], call ı̂ ∈ N0 the index such that rı̂+1 < r ≤ rı̂.
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We have, by T
ω(·)
r ≤ Tω(·)

rı̂ and the monotonicity and the doubling property of ω(·),

osc
Q
ω(·)
r

v ≤ osc
Qı̂

v ≤ c(p,Λ)ω(rı̂) ≤ 32c(p,Λ)ω(rı̂+1) ≤ c ω(r) ;

on the other hand, if r ∈ (r̃, r0], we simply use (4.13) in the following way:

osc
Q
ω(·)
r

v ≤ ω(r0) ≤
(r0

r̃

)α
p

ω(r̃) ≤ c ω(r̃) ≤ c ω(r) ,

recalling that r̃ ≡ r0/c̃(n, p,Λ, α). Theorem 1.1 now follows taking into account
how in (4.12) we scaled our original solution u.
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psala, Sweden.
E-mail address: paolo.baroni@math.uu.se

Aalto University, Institute of Mathematics, P.O. Box 11100, FI-00076 Aalto, Fin-

land.
E-mail address: tuomo.kuusi@tkk.fi

CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Por-
tugal.

E-mail address: jmurb@mat.uc.pt


	1. Introduction
	1.1. Statement of the problem and main result
	1.2. Some notes about the proof.
	1.3. Notation

	2. Collecting tools
	2.1. Approximation of the problem
	2.2. Scaling of the equation
	2.3. Space-time geometry
	2.4. Energy estimates
	2.5. Supersolutions of evolutionary p-Laplace equations
	2.6. Harnack estimates

	3. Reducing the oscillation
	3.1. Basic reductions
	3.2. The first alternative
	3.3. The second alternative

	4. Deriving the modulus of continuity
	4.1. An explicit modulus

	References

